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Abstract. We propose a scheme to explicitly detect and resolve ambigu-
ous situations in multiple target tracking. During periods of uncertainty,
our method applies multiple local single target trackers to hypothesise
short term tracks. These tracks are combined with the tracks obtained
by a global multi-target tracker, if they result in a reduction in the global
cost function. Since tracking failures typically arise when targets become
occluded, we propose a local data association scheme to maintain the
target identities in these situations. We demonstrate a reduction of up
to 50% in the global cost function, which in turn leads to superior per-
formance on several challenging benchmark sequences. Additionally, we
show tracking results in sports videos where poor video quality and fre-
quent and severe occlusions between multiple players pose difficulties for
state-of-the-art trackers.
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1 Introduction

Tracking multiple objects in a dynamic environment is crucial for visual scene
understanding. Some of the most relevant applications for this task include driver
assistance, visual surveillance, and sports analysis. The problem itself consists of
localising each target in every single time instance as well as correctly maintain-
ing each target’s identity over time. This latter task is often referred to as data
association and can be solved by existing methods as long as all targets remain
sufficiently far apart from one another. However, challenges arise when several
targets come close together causing intersecting or intertwined trajectories. In
such situations, recovering each individual’s identity has a combinatorial com-
plexity in the number of tracks and measurements, and thus quickly becomes
infeasible. In addition, the task is complicated further by noisy sensor data with
imprecise localisation, false alarms, and missing measurements.

Most current approaches to multi-target tracking are based on tracking by
detection [1–6]. Here, tracks are formed by linking detections obtained inde-
pendently in each frame in a preprocessing step. This helps to avoid tracker
drift, but usually depends on a pre-defined target model which is trained offline.
When tracking by detection, more accurate results have been obtained by so-
called global methods that consider a batch of several frames (or even an entire
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Fig. 1. Overview of our optimisation algorithm. Given a possibly erroneous solution
(a), we locate each error (b) and perform a local optimisation within its neighbourhood
(c). The newly obtained solution is inserted back into the original one if and only if it
increases the overall likelihood considering all remaining frames and targets (d).

video sequence) jointly as opposed to determining the state based only on pre-
vious observations [7, 8]. The rationale here is that potential ambiguities may be
resolved more easily once more evidence is acquired. However one must accept
a delay in the output as a tradeoff for better accuracy.

Although tracking by detection approaches achieve state-of-the-art results,
they struggle in those situations where the detector provides little to no evidence
for the presence of a target. Detector failures may arise for numerous reasons,
such as low image contrast, partial or complete occlusions, or abrupt and signif-
icant change in appearance due to lighting, posture, or object size. Even though
short detection dropouts in certain, unambiguous areas can usually be bridged
robustly by global optimisation techniques, correctly resolving data association
remains challenging in cases where several targets merge on the image plane ob-
structing each other’s line of sight. Long term occlusions or ambiguities are even
more challenging, as the number of feasible association combinations increases
with the time interval considered.

We propose to exploit the power of model-free visual trackers to ‘untangle’
tracks in such challenging situations (see Fig. 1 for an illustration). Model-free
trackers do not rely on pre-existing detections, instead building an online model
of target appearance based purely on an instance of the target appearing in a
single frame. The performance of visual object trackers has increased dramati-
cally in recent years [9] making them robust to appearance change and partial
occlusion, which is a desirable property for solving the problem at hand. More-
over, we propose a strategy to integrate model-free visual object tracking into a
multi-target tracking setting. Although visual trackers have, in one way or an-
other, been previously used in combination with multiple target tracking [10–12],
we present a rather different strategy to couple the two approaches.

In particular, our main contributions are as follows:

• We propose a scheme to explicitly detect challenging situations in multi-
target tracking and address these in a way that builds on recent progress in
both single and multi-target tracking.

• We apply model-free visual trackers to several targets simultaneously in order
to resolve difficult situations locally.
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• We integrate visual trackers into a multi-target tracking framework to find
improved optima of the objective function by making local changes.
• We demonstrate the validity of our approach on particularly challenging

sports videos.

We argue that our approach is able to drive the optimisation much quicker
towards improved local minima leading to a substantial increase in performance
both visually and quantitatively. Our experiments show superior performance
on several challenging benchmark sequences.

2 Related Work

The popularity of multi-target tracking in computer vision has increased dra-
matically in the recent past leading to a large amount of related literature. In this
section we will concentrate on the most important work related mainly to offline
multi-target tracking approaches. Despite their limitation of a delayed output,
offline approaches to multi-target tracking have become increasingly popular
due to their superior accuracy. The main difference to online (or recursive) ap-
proaches, such as Kalman filters [13, 14] or particle filters [7, 8] is that instead of
processing each frame as soon as it is obtained, the optimisation of an objective
function is performed on a batch of consecutive frames simultaneously. These
methods are usually more robust at dealing with false positives or occlusions.

Offline multi-target tracking. The main difference between approaches lies
in the exact formulation of the objective function and its optimisation strategy.
Jiang et al . [15] solve an integer linear program using LP-relaxation to obtain
a (nearly) optimal solution. However, the number of targets in the scene needs
to be fixed a-priori. Zhang et al . [1] reformulate the task as a network flow
problem, which can be solved in polynomial time using min-cost flow algorithms.
Occlusions are handled by inserting target hypotheses in a greedy fashion. Their
approach served as a starting point for a similar strategy [16], which followed a
greedy optimisation scheme and was thus much more efficient. Another globally
optimal approach, which explicitly models merged measurements is presented
in [17]. Individual tracks are however resolved using a simple shortest paths
strategy, which may result in intersecting paths. More recently, Liu et al . [5]
use a network-flow approach to recover long-term trajectories of sports players
using context-aware motion models, while Butt and Collins [18] integrate high-
order dynamic terms. A coupling of object detection and tracking has been
proposed in [19, 20] with a quadratic and linear objective, respectively. Further
formulations to solve for data association include graph-based approaches, such
maximum weight independent set [21] set-cover [22] and generalised minimum
clique graphs [4].

A slightly different way to solve the task is to concentrate on reconstructing
trajectories rather than on data association and only implicitly handle the lat-
ter. A regularly discretised space allows one to pose the problem as an integer
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linear program, which is solved to global optimality by LP-relaxation [23] or by
the k-shortest paths algorithm [2]. To overcome the limitation imposed by the
discrete grid, a purely continuous state space is used in [6]. However, such an
accurate description of the complex task leads to a highly non-convex optimi-
sation problem which is minimised locally by gradient descent augmented with
heuristic discontinuous jumps. A more elegant discrete-continuous energy was
later proposed in [24], where both trajectory estimation and data association
are handled simultaneously by minimising a single objective.

The main motivation for designing such complex objective functions [19, 21,
6, 24] is to describe the problem at hand as accurately as possible. Although they
obtain state of the art results, they are difficult to optimise and often become
trapped in local minima. In practice, this manifests in tracking errors such as
fragmented trajectories or confused target identities. In this work we focus on
overcoming these errors by applying recent results from single target tracking.

Model-free tracking. Recent advances in visual single object tracking [25–27]
have also adopted the tracking by detection paradigm. However, rather than
train the detector offline, so-called model-free trackers train a classifier to sepa-
rate the target from its background, using positive and negative training exam-
ples gathered while tracking. This has the advantage of requiring only initial-
isation in a single frame and of training a detector specifically for the current
appearance of the target. Several methods have been applied to the task, in-
cluding multiple instance learning [28], structured output learning [26], metric
learning [29] and kernel methods [27].

In general, model-free tracking methods are successful over short time pe-
riods but their performance degrades over longer time spans, or when target
appearance changes significantly. By using them to correct short term errors in
long term tracks obtained by global methods, we play to the strength of these
two different approaches. Because the model-free tracker operates only on the
output of the global tracker, it is independent of its implementation and can
therefore be combined with any of the above tracking frameworks. The final re-
sult is still obtained by optimising the global objective function; the short term
tracks are simply used to generate plausible hypotheses, which the optimiser can
use to break out of local minima.

Other recent work has also demonstrated the use of single target visual track-
ers within multi-target tracking. In [10], contours of multiple objects of arbitrary
shape are represented using level-sets and an underlying generative model de-
termines location, depth ordering and segmentation of each target. Similarly,
a level-set tracker is also applied in the context of pedestrian tracking from a
moving camera in [11], where sparse person detections are augmented with the
temporally varying target contours provided by the low-level tracker. Izadinia et
al . [30] detect pedestrians using the deformable part-based model [31] and in
addition to tracking entire people, trajectories of their individual body parts are
recovered. In [12], multi-target tracking is based on both, detections from an
offline object detector and a visual tracker output. The decision on which cue to
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Algorithm 1: Tracking multiple targets by local and global optimisation

input : Initial global solution S (Sec. 3.1)
output: Final trajectories
while ¬ converged do

Find next error Ξ in current solution S (Section 3.2)
Optimise locally within spatio-temporal neighbourhood of Ξ to obtain Ŝ
(Sec. 3.3, 3.4)
Stitch partial solution Ŝ into global solution S, if global cost is reduced
(Sec. 3.5)

end

use is made based on a pre-trained model using several features such as detector
response or optic flow. Zhang et al . [32] also propose to couple several individual
trackers by enforcing to preserve the spatial structure between all targets over
time. While this may help to resolve data association in certain cases where
objects tend to exhibit similar motion patterns, it is not generally applicable
to arbitrary people tracking, in particular sports videos with abrupt and erratic
target motion.

Our method is different from previous work in the following aspects: (i) We
exploit the power of visual trackers explicitly in difficult situations. To this end,
we localise difficult situations in the space-time volume and use the output of
multiple coupled single target trackers to generate a strong set of local hypothe-
ses. (ii) We present a local data association scheme for single target trackers.
To avoid clumping and identity switching between individual trackers, we follow
a simple, yet effective technique based on bipartite graph matching. (iii) We
integrate the output of single target trackers into a global energy minimisation
method. To avoid potential drift caused by online learned trackers, the local
solution is verified in the global context using a robust multiple target objective.

3 Multi-target tracking by energy minimisation

In this work, we follow the recent trend and address multi-target tracking by
minimising a highly complex energy function. We use the discrete-continuous
formulation proposed in [24]. Note, however, that our method is generic and
does not rely on any specific formulation of the underlying objective function.

A weakness of any non-convex global objective is that it may become trapped
in local minima, which results in fragmented or incorrectly associated tracks. To
remedy this, we propose to focus explicitly on those solution regions that are
most likely to be erroneous and to guide the optimisation toward alternative
solutions using single target tracking with local data association. The entire
algorithm is summarised in Algorithm 1, and the individual steps are illustrated
in Figure 1.

We now describe in more detail each of the steps in the algorithm.
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3.1 Global data association

In our formulation, multi-target tracking is performed by optimising a discrete-
continuous objective, where both data association and trajectory estimation are
solved for by minimising a single energy function. Given a set of target detections
D = d1, . . . , dD within a video sequence of F frames, the goal is to find the most
likely solution for assigning a unique target identifier to each detection, and at
the same time to estimate a continuous trajectory for each target.

Following the notation of [24], we represent the state space by two sets of
variables. A discrete set f = fi, . . . , fD determines the data association, where
each variable takes on a label l from the label set L = {1, ..., L,∅} which cor-
responds to a specific target (or a false alarm). A set of continuous variables T
describes the shape of all trajectories under consideration, where each trajectory
is represented by piecewise polynomials.

The discrete part of the energy is posed as a graphical model with unary and
pairwise potentials and label costs [33]:

E(f) = φd + ψd,d′ + hf + hXf , (1)

while the continuous part controls the trajectories:

E(T ) = φT + hf + hXf . (2)

In a nutshell, the unary (or data) terms φ measure how well the trajectory
hypotheses fit the observations, the pairwise terms ψ enforce spatio-temporal
smoothness in the labelling, and the label cost models a prior on individual
trajectories (hf ), such as target dynamics or track persistence, as well as on
pairs of tracks (hXf ) to suppress implausible solutions with strongly overlapping
trajectories. The complete energy is then minimised by alternately fixing one
set of variables at a time, generating the initial solution S. For more details, we
refer the reader to [24].

3.2 Error detection

Given an initial solution hypothesis S, our goal is to localise errors within this
solution and correct them. Several types of local error may exist, including split
tracks, swapped identities and merged trajectories. The importance of each error
type is application specific, but to demonstrate our approach, we focus only
on the most obvious error type that is also convenient to detect, namely an
interrupted trajectory. Under the assumption that the scene does not contain
any doors or large scene occluders where people may disappear indefinitely, a
target that enters the field of view must ideally remain tracked until it leaves the
scene. Therefore, any trajectory Ti that terminates prematurely and not close
to the image border is considered a candidate for improvement. In practice, this
is likely to overestimate the number of locations at which errors may occur.
This does not detract from the final solution as, in the case of a genuine track
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endpoint, all hypothesised track joins are likely to result in a higher overall cost,
and therefore the initial solution will be unchanged.

Let xt
i be the (x, y) location of target i in frame t. Further, let t∗i denote either

the first or the last frame in which target i exists. An error Ξ = {xi, yi, t∗i } is

possibly present at the spatio-temporal location x
t∗i
i if and only if 1 < t < F and

β(x
t∗i
i ) > τ . β(·) computes the distance to the closest image border and τ is a

margin where trajectories are allowed to terminate, which is set to 100 pixels in
our experiments.

3.3 Choosing the local optimisation region

To optimise the solution locally, we consider a spatio-temporal window around
each detected error. In particular, we optimise over the temporal window Ω =
{t − k, . . . , t + k}, where k is fixed to 10 frames in our experiments. This time
span is usually long enough to resolve an ambiguity, but still local enough to
rely on the output of a visual tracker.

It remains to determine which existing trajectories are involved in the cur-
rent error and should be re-estimated within Ω. On one hand, it is desirable to
reduce the current problem to the smallest possible subset to enable efficient op-
timisation. On the other hand, discarding too many concurrent trajectories may
lead to conflicts in the later step when the two solutions are to be merged. In a
typical setting, trajectories that are far apart from one another are independent.
A reasonable trade off therefore is to only consider a small subset of trajectories
T ∗ ⊂ T which is within a neighbourhood Σ of the error Ξ. To determine the
neighbourhood, we create a short auxiliary trajectory T̂ by tracking the target
back and forth within the temporal window Ω, initialised from the error Ξ. To
reduce the state space for the optimisation while at the same time not ignoring
important dependencies, we consider only those detections di that are within a
certain radius of T̂ during the local optimisation (cf . Fig. 1 (c)). Formally, the
set of target candidates is reduced to

D̂ = {di|ti ∈ Ω, ‖di − T̂ ti‖ < 2s}, (3)

where di denotes the spatial and ti the temporal location of detection i, respec-
tively, and s is the target size.

3.4 Local optimisation

In principle, any existing method can be used to find a plausible solution within
the spatio-temporal neighbourhood of the detected error. To guide the optimi-
sation into more promising regions, we exploit single target visual trackers in
combination with local data association to generate likely trajectory hypothe-
ses. To this end, we initiate a tracker Ti from each terminating point of each
trajectory Ti in T ∗ that is involved in the error Ξ. In our experiments we employ
a recent tracker by Henriques et al . [27]. We use the implementation distributed
by the authors. In practice, its high robustness and speed make it feasible to
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Fig. 2. Example of the bipartite graph that must be solved for each frame. Each tracker
Ti is connected to all detections Dj that lie within its search radius and to one occlusion
node Oi.

quickly generate many short term track hypotheses, although again other sin-
gle target trackers could also be used. The resulting tracks form a set of strong
candidates for selection in the optimisation procedure.

Traditional single target tracking-by-detection algorithms consider only the
single detection in each frame with maximum classification score. In order to
solve ambiguous situations where several trackers may detect the same target,
we extend this approach by including other possible targets. We include all
non-overlapping detections whose classification score is more than 10% of the
maximum classification score for the individual tracker. The task of local data
association is then to optimise the associations between a set of individually
trained trackers T and the set of detections D for each frame. By representing
this association problem in a bipartite graph we are able to find an optimal
solution using the Hungarian algorithm. In order to handle occlusions we also
introduce an occlusion node for each tracker, which accounts for fully occluded
targets. Figure 2 illustrates an example of the bipartite graph for one frame.

Each tracker Ti, i = 1, . . . , n, is initialised, and linked to m detections
D1, . . . ,Dm and its respective occlusion node Oi. Edges between trackers and
detections with a distance larger than the search radius r have weights zero and
are therefore omitted in Figure 2. The size of r is chosen as the mean of the
height and width of the target. The weight assigned to each edge combines the
appearance measure given by the classification score and a proximity measure
that penalises large spatial jumps between consecutive frames:

wi,j = si,j · pi,j , (4)

where si,j is the classification score for tracker i evaluated on target j, scaled to
[0, 1]. pi,j is a linear proximity measure between the last detection of tracker i
and target j and is defined as

pi,j =
1

r
max

(
0, r − ‖Tt−1

i − Dj‖
)
. (5)

The proximity measure is used as a simple random walk motion model. Par-
ticularly in sports the motion may be abrupt, therefore, we choose this zero
displacement model rather than assuming constant velocity.
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Edges connecting a tracker to its occlusion node are assigned a low weight,
which is empirically chosen as 8% of the maximum classification score in order
to be lower than real detections.

3.5 Combining local and global solutions

To stay consistent with the overall formulation, we minimise the same discrete-
continuous objective function as is used to evaluate the quality of the complete
solution on the spatio-temporal subset {Σ,Ω} using track hypotheses from Sec-
tion 3.4. After the optimisation, the resulting solution Ŝ replaces the original
solution within {Σ,Ω} if the overall energy E(Ŝ ∪ S̃) is decreased. S̃ is obtained
by simply removing all partial trajectories from S that lie within the spatio-
temporal neighbourhood {Σ,Ω} of the error.

4 Experiments

Datasets. We demonstrate our approach on eight different sequences. The first
set consists of six publicly available videos including the PETS 2009 bench-
mark [34]1 and TUD Stadtmitte [35]. All videos show pedestrians in a single
view but they exhibit a large variation in person count, camera viewpoint and
motion patterns. Since the camera calibration is available for this dataset, we
perform tracking on the ground plane in world coordinates.

As well as evaluating on standard benchmarks, we also demonstrate the per-
formance on difficult sports tracking data. In particular we show tracking on two
sequences in the challenging sport of Australian Rules Football (AFL), in which
there is regular and frequent crowding of players and contact between them,
making it a very difficult tracking problem. We make this new dataset includ-
ing the ground truth annotations and the detections used in this work publicly
available2.

Metrics. Quantifying performance of multiple target tracking is a notoriously
difficult task [36]. Ambiguities in annotations, assignments strategies and met-
ric descriptions prohibit a purely objective evaluation. Here we follow the most
widely used strategy and report several metrics for all our experiments. Next to
standard precision and recall figures we report the CLEAR MOT metrics [37],
which consists of tracking accuracy (MOTA) and tracking precision (MOTP).
The former combines three error types: false positives, missed targets and iden-
tity switches, into a single number such that zero errors corresponds to 100%.
The latter measures the localisation error of the tracker w.r.t. the annotated
ground truth. Moreover, we also show the number of correctly recovered trajec-
tories as proposed in [38]. A target is considered mostly tracked (MT), if it is
correctly detected in over 80% of frames within its time span. Similarly, a mostly

1 Sequences: S2L1, S2L2, S2L3, S1L1-2, S1L2-1
2 http://research.milanton.net/data
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Fig. 3. Visual trackers without (1st and 3rd rows) and with (2nd and 4th rows) local
data association. See text for details.

lost (ML) trajectory is only recover in 20% of frames or less. Finally, the numbers
of track fragmentations and identity switches are stated for completeness.

Before presenting the overall tracking performance of our system, we discuss
the importance of local data association for single target trackers and illustrate
the potential of our locally driven optimisation scheme measured by the reduc-
tion of the total cost. We then provide an extensive quantitative evaluation on
various challenging sequences and compare our results to several state-of-the-art
methods.

4.1 Local data association

Let us first qualitatively demonstrate the effect of local data association using
multiple model free trackers in situations with a high presence of occlusions.
Figure 3 shows two comparisons between tracking with and without local data
association. The first sequence is from the PETS 2009 S2L2 dataset, and the
second one is a challenging situation from an AFL game. The images are cropped
for better visibility. In all cases model-free trackers are initialised for each target
depicted with bounding boxes in the left most image. The 1st and 3rd rows
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Fig. 4. Minimising a global energy function by focusing on local optimisation windows.
The dotted plots on the right hand side depict the energy minimised by our scheme by
only using independent single target trackers without local data association (no LDA).

show the results of running the two, respectively three trackers individually,
without local data association. In rows two and four the results are obtained by
including the Hungarian data association described in Section 3.4. The results
show clearly that the individual trackers are prone to drift in settings with
multiple persons. In row 1 the identity switches and the blue target is lost after
occlusion. By including local data association these situations are resolved, and
the two targets are correctly tracked even after full occlusions. In the 3rd row
without data association the three trackers clump together and follow the same
person which yields the highest classifier score for each of the trackers after the
occlusion. The local data association shown in the 4th row again resolves this
situation and keeps tracking the three individual persons while maintaining their
correct identities.

To quantify the importance of multiple tracker reasoning, we minimise the
global objective with and without explicit local data association (no LDA) for
proposal generation. Experimental results are reported in the following sections.

4.2 Energy minimisation

To verify the potential of our approach, we compare the magnitude of the initial
solution S of the overall energy to the final solution obtained after including local
tracks. Figure 4 shows the relative energy decrease for various sequences. The
energy is scaled in each case such that the initial point, which is obtained by [24],
corresponds to 100%. It is important to note that we minimise the exact same
energy without introducing new detections. By focusing on erroneous regions and
by exploiting model-free trackers for better hypothesis generation, our proposed
local optimisation can find a lower global cost in nearly every iteration and an
overall reduction of over 50% in some cases. Dotted lines for the AFL sequences
show the energy reduction using proposals of independent single target trackers
without local data association. One iteration takes approximately one second to
compute on a standard PC. We set the maximum number of iteration to 150 in
all our experiments.
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Table 1. Quantitative results on two AFL sequences. Best result across all methods
is highlighted in bold face for each measure.

Method MOTA MOTP MT ML Frag. ID sw. Precision Recall

FFP Detector [39] – – – – – – 65.4% 55.0%
SMOT [40] 16.7% 60.8% 2 3 38 14 59.8% 52.0%
DCO [24] 29.7% 63.3% 3 2 93 97 70.9% 56.3%

ours (no init) 32.0% 64.1% 6 2 54 54 67.4% 64.5%
ours (no LDA) 39.0% 63.6% 6 2 44 27 72.1% 64.2%
ours (full) 41.4% 63.6% 7 2 39 22 73.2% 65.8%

4.3 Quantitative evaluation

AFL sports data. We first demonstrate quantitative performance of our ap-
proach on the two sports sequences. To obtain candidate detections, we trained
a person detector based on fast feature pyramids [39] using only one single image
as training data resulting in moderate precision and recall. Table 1 shows the
detector’s performance as well as tracking results from two recent multi-target
tracking methods. The similar-appearance multiple object tracker (SMOT) [40]
is specifically designed to address situations shown in these sports sequences
with similar target appearance by relying only on motion similarity and using a
generalised linear assignment to reconstruct long-term tracks. While this method
shows excellent performance with no or little detection noise, it struggles to cor-
rectly infer plausible trajectories in a realistic challenging setting. The second
baseline is a recent energy minimisation-based method (DCO) [24], which can
eliminate many false positive detections. However, due to the complex formula-
tion of its objective, the optimisation reaches only a moderate local minimum
with many short tracks leading to a high number of interrupted trajectories and
identity switches.

The second part shows three variants of our proposed method. The first one
(no init) is our optimisation strategy starting from the trivial solution, where
each detection is considered an error (or equivalently a single-frame track). Note
that we are able to outperform other methods by appying our customized op-
timisation scheme. The second strategy (no LDA) uses [24] as initialisation but
does not involve local data association for hypothesis generation as described in
Section 3. Finally, by applying our full method using localised optimisation with
visual trackers, we are able to further minimise the objective function, which is
also reflected in the superior tracking performance.

Public benchmark. Our second set of experiments involves a public tracking
benchmark. Table 2 shows a quantitative comparison of our proposed strategy
to previous methods: A network flow-based approach solved with dynamic pro-
gramming (DP) [16], globally optimal tracking on a discrete grid (KSP) [2] and
the same energy minimisation formulation as before [24]. All numbers are com-
puted using code provided by the authors, publicly available detections, ground
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Table 2. Comparison to previous methods on a standard benchmark (PETS, TUD).
The results are averaged over six sequences.

Method MOTA MOTP MT ML Frag. ID sw. Precision Recall

HOG/HOF Det. [41, 42] – – – – – – 79.5% 62.2%
DP [16] 46.0% 64.7% 8 11 165 204 91.7% 55.8%
KSP [2] 41.7% 62.8% 8 20 10 18 91.6% 46.8%
DCO [24] 55.7% 63.6% 11 9 49 43 93.0% 61.6%
ours 56.9% 64.1% 13 10 40 48 93.4% 62.8%

truth and evaluation scripts3. Note that the slightly higher absolute number of
ID switches is a result of incorrectly bridging or extending interrupted trajec-
tories. However, the positive effect of recovering more tracks (MT) and thereby
increasing the recall outweighs, yielding higher overall accuracy.

Although we outperform state-of-the-art methods on this benchmark, the
improvement is less prominent than in the AFL case. One reason for this be-
haviour may be that the detection quality is poorer on the sports sequences due
to large deformations and small target size (cf . Tab. 1 and Fig. 5), yielding a
more complex optimisation problem with more local minima. It is also possible
that [24] finds a solution much closer to the global optimum on the public se-
quences, which may indicate that it is well suited to the benchmark but shows
limitations on novel data.

4.4 Qualitative results

Finally, Figure 5 illustrates qualitative results on three sequences. Each row
shows three frames from AFL1, AFL2, and PETS S2L2, respectively. Note that
our method is able to correctly identify nearly all targets even in extremely
challenging conditions with substantial levels of multiple occlusions. Also note
how the potential of using visual model-free trackers within a traditional multi-
person tracking setting is unfolded in situations with extensive pose variation,
such as demonstrated by the cyan (ID 33) and the blue (ID 20) targets in the
first and second row, respectively. Please refer to the supplemental video for
further visual results.

5 Conclusion

We proposed a simple yet effective method to optimise highly complex objectives
for multiple target tracking by focusing explicitly on correcting errors locally. A
local data association technique combined with a set of visual object trackers is
able to drive the optimisation into much better minima reducing the energy by
over 50% and consequently leading to superior solutions. We demonstrate the

3 Note that the corrected numbers are reported for [24], which differ from the original
publication.
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Fig. 5. Exemplar frames from two AFL clips and the PETS S2L2 sequence. Note that
using model-free trackers allows one to maintain the identity of a player even during
severe deformations and pose changes (cf . the blue target (ID 20) in the second row).

validity of our approach on particularly challenging sports sequences and public
benchmark data achieving state of the art performance.

In future work we plan to more thoroughly investigate different error types
and their influence on the final solution. It may also be possible to design even
more accurate and more complex objective functions that better approximate
the true state but still remain tractable using our local optimisation strategy.
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